Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)

نویسندگان

  • Huai-Xin Cao
  • Ji-Rong Lv
  • J. M. Rassias
  • Jozsef Szabados
چکیده

We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let A be a Banach algebra and X a Banach A-module, f : X → X and g : A → A. The mappings Δ1 f,g , Δ2 f,g , Δ3 f,g , and Δ4 f,g are defined and it is proved that if ‖Δ1 f,g x, y, z,w ‖ resp., ‖Δ3 f,g x, y, z,w, α, β ‖ is dominated by φ x, y, z,w , then f is a generalized resp., linear module-A left derivation and g is a resp., linear module-X left derivation. It is also shown that if ‖Δ2 f,g x, y, z,w ‖ resp., ‖Δ4 f,g x, y, z,w, α, β ‖ is dominated by φ x, y, z,w , then f is a generalized resp., linear module-A derivation and g is a resp., linear module-X derivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS

Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and  generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations  from  the triangular Banach algebraof t...

متن کامل

Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (ii)

In this paper, we introduce and discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module.

متن کامل

Arens regularity and derivations of Hilbert modules with the certain product

Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$  is Arens regular. We also study the relationship between derivations of $A$ and $E$.

متن کامل

Lie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras

Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009